Bayesian Maximum Margin Principal Component Analysis

نویسندگان

  • Changying Du
  • Shandian Zhe
  • Fuzhen Zhuang
  • Yuan Qi
  • Qing He
  • Zhongzhi Shi
چکیده

Supervised dimensionality reduction has shown great advantages in finding predictive subspaces. Previous methods rarely consider the popular maximum margin principle and are prone to overfitting to usually small training data, especially for those under the maximum likelihood framework. In this paper, we present a posterior-regularized Bayesian approach to combine Principal Component Analysis (PCA) with the maxmargin learning. Based on the data augmentation idea for max-margin learning and the probabilistic interpretation of PCA, our method can automatically infer the weight and penalty parameter of max-margin learning machine, while finding the most appropriate PCA subspace simultaneously under the Bayesian framework. We develop a fast mean-field variational inference algorithm to approximate the posterior. Experimental results on various classification tasks show that our method outperforms a number of competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Markov-Switching Maximum Entropy Discrimination Machines

In this paper, we present a method that combines the merits of Bayesian nonparametrics, specifically stick-breaking priors, and largemargin kernel machines in the context of sequential data classification. The proposed model employs a set of (theoretically) infinite interdependent large-margin classifiers as model components, that robustly capture local nonlinearity of complex data. The employe...

متن کامل

Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis

‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...

متن کامل

Variational Bayesian Independent Component Analysis

Blind separation of signals through the info-max algorithm may be viewed as maximum likelihood learning in a latent variable model. In this paper we present an alternative approach to maximum likelihood learning in these models, namely Bayesian inference. It has already been shown how Bayesian inference can be applied to determine latent dimensionality in principal component analysis models (Bi...

متن کامل

غربال‌‌گری خودکار افراد خطاکار با تحلیل تفکیک‌پذیری مشخصات سیگنال‌های هدایت الکتریکی پوست و حجم‌‌سنجی نوری

Credibility assessment screening by a small system and receiving optimum result in minimum time is a basic need in critical gates. Therefore the aim of this research is automatic detection of stress in guilty persons through skin conductance response and photoplethysmograph signals which are convenient and ease-of-use sensors .In this paper, a set of database with interview protocol (including ...

متن کامل

Hidden Markov Bayesian Principal Component Analysis Hidden Markov Bayesian Principal Component Analysis

Probabilistic Principal Component Analysis is a reformulation of the common multivariate analysis technique known as Principal Component Analysis. It employs a latent variable model framework similar to factor analysis allowing to establish a maximum likelihood solution for the parameters that comprise the model. One of the main assumptions of Probabilistic Principal Component Analysis is that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015